
Confidential manuscript submitted to Geophysical Research Letters

Long-term global ocean heat content change driven by sub-polar1

surface heat fluxes2

Taimoor Sohail1, Damien B. Irving2, Jan D. Zika1, Ryan M. Holmes1,2,3and John A. Church2
3

1School of Mathematics and Statistics, University of New South Wales, Sydney, Australia4
2Climate Change Research Centre, University of New South Wales, Sydney, Australia5

3ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, Australia6

Key Points:7

• We introduce a novel tracer-percentile framework which relates ocean heat content8

trends to surface flux and turbulent mixing changes9

• Heat content changes in the 90% coldest ocean volume are traced to heat fluxes10

which, on average, enter 23% of the surface area of the ocean11

• Using this framework, we trace a cooling bias in the 5-20% warmest volume of12

CMIP6 climate models to surface flux biases13

Corresponding author: Taimoor Sohail, t.sohail@unsw.edu.au

–1–



Confidential manuscript submitted to Geophysical Research Letters

Abstract14

The ocean has absorbed approximately 90% of the accumulated heat in the climate15

system since 1970. As global warming accelerates, understanding ocean heat content16

changes and tracing these to surface heat input is becoming increasingly important. We17

introduce a novel tracer-percentile framework in which we organise the ocean into tem-18

perature percentiles from warmest to coldest, allowing us to trace changes in ocean tem-19

perature to changes in air-sea heat fluxes and mixing. Applying this framework to obser-20

vations and historical CMIP6 simulations, we find that 40% of heat uptake between 197021

and 2014 occurs in the warmest 10% ocean volume. However, the coolest 90% ocean vol-22

ume outcrops over 23% of the ocean’s surface area, implying a disproportionately large23

heat input per unit area. Additionally, a cold bias in the CMIP6 models is traced to inac-24

curate sea surface temperatures and surface heat fluxes into the warmest 5 – 20% ocean25

volume.26

Plain Language Summary27

The ocean has absorbed approximately 90% of the heat that has built up in the cli-28

mate system since 1970. Understanding the processes which drive this uptake of heat by29

the ocean is critical to climate projections. Typically, this has required the use of climate30

and ocean models, which must be validated with ocean observations. To enable this, we31

introduce a new method, the tracer-percentile framework, which allows us to directly use32

observations to understand the processes dictating heat uptake by the ocean. Using climate33

models (collectively called CMIP6) and ocean observations, we calculate the heat input34

into layers of water at the ocean surface, the total heat stored in these layers, and the mix-35

ing of heat between these layers. We find that the heat input at the surface and heat stored36

in the ocean has increased between 1970 and 2014, with 60% of the increase in heat up-37

take at the surface happening over about a quarter of the ocean’s surface, which connects38

to 90% of the world’s ocean volume. We also identify inaccuracies in the CMIP6 models39

and trace these problems to the way the surface properties of the ocean (or surface heat40

input) are represented.41

1 Introduction42

The global ocean has absorbed approximately 90% of the excess heat in the climate43

system since 1970 [Schuckmann et al., 2020], impacting global sea level rise [Domingues44

et al., 2008; Church and White, 2011; Gregory et al., 2013], surface air temperature [Watan-45

abe et al., 2013] and extreme weather [Lin et al., 2013]. As the radiative imbalance of the46

planet is so difficult to measure directly, knowledge of global ocean heat content (OHC)47

changes resulting from ocean heat uptake is critical for monitoring climate change. Heat48

enters the ocean at the surface and is subsequently advected and diffused in the ocean49

[Gregory, 2000; Kuhlbrodt et al., 2015; Liang et al., 2015; Cummins et al., 2016]. Past50

research has thus articulated a fixed-depth framework, which quantifies changes in global51

OHC at a given depth as a balance between surface fluxes and vertical advection and52

diffusion. Analysing ocean circulation and heat transport in fixed-depth coordinates has53

yielded a number of insights. Prior work has established that mean downward heat trans-54

port is balanced by along-isopycnal upward eddy fluxes, particularly in the Southern Ocean55

[Gregory, 2000; Gnanadesikan et al., 2005; Wolfe et al., 2008; Morrison et al., 2013; Kuhlbrodt56

et al., 2015]. In addition, Zika et al. [2013] found that downward heat transport in the57

meridional overturning circulation is driven by a combination of salinification in the sub-58

tropics and wind-driven Ekman pumping in the Southern Ocean.59

While the fixed-depth framework provides a useful way of analysing heat transport,60

it can be challenging to quantify observed OHC, as this requires knowledge of the veloc-61

ity field [something that is only possible with models (e.g., Wolfe et al. [2008]; Kuhlbrodt62
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et al. [2015]) and reanalysis products (e.g., Liang et al. [2015, 2017])]. Importantly, the63

vertical heat budget is impacted by adiabatic processes, internal variability and heave,64

meaning that adiabatic redistribution of existing heat impacts trends in OHC at fixed depth.65

Therefore, there remains scope to develop a framework which quantifies how much ob-66

served heat is added to the climate system at a given location.67

Numerous studies have moved towards analysing ocean circulation and heat transport68

in a water mass-based reference frame [Walin, 1982; Groeskamp et al., 2019]. Recently69

this framework has been used to understand climate change [Zika et al., 2015] and climate70

variability [Evans et al., 2017]. Holmes et al. [2019] formalised a heat budget in fixed-71

temperature coordinates, termed the diathermal heat transport framework. By analysing72

heat transport across a given isotherm, adiabatic processes, internal variability and heave73

are excluded. In the resulting temperature-based framework, heat content tendencies are74

tracked to changes in diabatic transport processes - air-sea fluxes and mixing [Holmes75

et al., 2019]. The temperature-based framework allows us to link the temperature at which76

heat enters the ocean to the temperature classes which exhibit OHC changes. Diathermal77

fluxes may also be calculated purely from observed in-situ temperature and surface flux78

data (with the mixing term calculated by residual).79

The temperature-based framework addresses the challenges posed by the fixed-depth80

framework, but also presents its own complications. For instance, isotherms shift as the81

ocean warms such that the characteristic isotherms of a given region move to a different82

region, making partitioning between the tropics, sub-tropics and sub-polar oceans dif-83

ficult. We introduce a novel diagnostic which defines OHC changes at temperature per-84

centiles, ordered from warmest to coldest. The new tracer-percentile framework allows us85

to quantify observed changes in OHC and trace them to changes in surface heat fluxes and86

mixing using a coarse-resolution hydrographic observational dataset. The tracer-percentile87

framework also enables a direct evaluation of model biases and attribution of biases to88

surface fluxes or mixing. In a uniformly warming ocean, the tracer-percentile framework89

avoids issues associated with shifting isotherms. In addition, organising the ocean by vol-90

ume means that OHC changes can be translated into changes in the temperature of the91

surface that bounds a given volume percentile, allowing a comparison with changes in the92

globally-averaged temperature at fixed depth.93

In section 2, we define the heat budget in terms of the tracer-percentile framework.94

In section 3, we summarise the data sources used in the analysis. In section 4, we detail95

the key results of the study, and in section 5 we summarise this work and discuss impor-96

tant implications.97

2 Theory98

2.1 The tracer-percentile framework99

In the fixed-depth framework, the variable of interest is � (I, C), the total OHC above100

a given depth I (equivalent to the volume-integral of the temperature multiplied by the101

reference density d0 and specific heat capacity of seawater �? , in the Boussinesq case).102

The fixed-temperature framework, on the other hand, considers the total OHC above a103

given isotherm H(Θ∗, C) where the corresponding volume is denoted V(Θ∗, C) [Palmer104

and Haines, 2009; Holmes et al., 2019]:105

V(Θ∗, C) =
∭

Θ(G,H,I,C)>Θ∗
3G3H3I;

H(Θ∗, C) = d0�?

∫ V(Θ∗ ,C)

0
Θ(G, H, I, C)3V,

(1)
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where Θ is the three-dimensional temperature field and Θ∗ is the binning temperature over106

which the integration occurs.107

Figure 1. Illustration of the change in bounding temperature of a fixed volume in a warming ocean. Left:
Cumulative distribution of volume as a function of temperature, ordered from hot to cold, at times C0 (black)
and C1 (red), where C1>C0. Right: Zonally-averaged representation of the volumeV0 and the bounding temper-
ature Θ0 (V0, C0) (black) and Θ1 (V0, C1) (red).

108

109

110

111

The cumulative distribution function (CDF) of volume V(Θ, C) in temperature co-112

ordinates (organised from warmest to coldest) is illustrated in figure 1 at times C0 and C1113

(where the ocean is assumed to warm uniformly for illustrative purposes). As the ocean114

warms, assuming the thermal expansion of sea water negligibly modifies the total volume115

of the ocean, the CDF moves along the temperature axis while remaining fixed in the cu-116

mulative volume axis. Hence, at a fixed temperature the volume increases, and at a fixed117

volume the bounding temperature increases. In the tracer-percentile framework, we invert118

the volume equation in (1) to get the bounding tracer (in this case temperature) ΘV (V, C)119

of a given volume V(Θ, C):120

V(Θ∗, C) ⇐⇒ ΘV (V, C), (2)

The temperature-percentile is ?(Θ∗, C) = 100 ×V(Θ∗, C)/V) , where +) is the total volume121

of the ocean. Note that we ignore the negligible changes in the total volume of the ocean122

with time. OHC in temperature percentiles is therefore expressed as:123

H(?, C) = 0.01V) d0�?

∫ ?

0
Θ? (?, C)3?, (3)

where Θ? (?, C) is equivalent to ΘV (V, C) at a given temperature-percentile.124

2.2 Ocean heat content tendency125

The OHC tendency in temperature percentiles, mH(?, C)/mC, may be related to spe-126

cific diabatic heat transport processes, providing insight into the drivers of OHC changes.127

To formulate the OHC tendency budget in temperature percentiles, we begin by looking128

at the diathermal heat transport budget introduced by Holmes et al. [2019] for the fixed-129

temperature framework.130

In the fixed-temperature framework, the total heat content tendency mH(Θ, C)/mC is131

a consequence of changes in the surface forcing F , mixing M and diathermal heat ad-132
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vection GΘd0�? . The diabatic across-isotherm volume flux GΘd0�? is itself a conse-133

quence of surface forcing and mixing. It is also dependent upon an arbitrary choice of134

reference temperature ΘA4 5 . Palmer and Haines [2009] and Holmes et al. [2019] sought to135

exclude the reference temperature-dependent diathermal advection term from the heat bud-136

get, Palmer and Haines [2009] by setting reference temperature as the mean temperature137

of the volume bounded by an isotherm, and Holmes et al. [2019] by combining the heat138

and volume budgets into a budget for internal heat content that is independent of the ref-139

erence temperature. The internal heat content tendency in Holmes et al. [2019] is directly140

related to changes in surface fluxes and mixing,141

mH�
mC
(Θ, C) = d0�?

∫ ∞

Θ

mV
mC
(Θ, C)3Θ = F (Θ, C) +M(Θ, C), (4)

where F (Θ, C) is the surface heat flux into the volume V(Θ, C), including the compo-142

nent associated with surface volume fluxes (see Holmes et al. [2019]). M(Θ, C) is the heat143

transport across the Θ isotherm due to mixing.144

OHC change in the fixed-temperature framework results in changes in the volume145

distribution of temperature classes (i.e., 3V/3C or equivalently 3?/3C). OHC change in146

the temperature percentiles results in changes in the temperature of the isotherms that147

bound a given volume percentile of the ocean (i.e., 3Θ?/3C). The heat content in the tem-148

perature percentiles in equation (3) may thus be related to the OHC in the fixed-temperature149

framework in equation (1) using the slope of the cumulative volume distribution of the150

ocean in fixed-temperature coordinates (figure 1):151

mΘ?

mC
=
m?

mC

(
mΘ?

m?

)
. (5)

This transformation between fixed-temperature and temperature-percentile co-ordinates152

allows us to map between the internal heat content tendency in Holmes et al. [2019] and153

the equivalent heat content tendency in the tracer-percentile framework. Combining equa-154

tions (4) and (5), we obtain the OHC tendency in temperature percentiles:155

mH
mC
(?, C) = 0.01V) d0�?

∫ ?

0

mΘ?

mC
(?, C)3? = F (?, C) +M(?, C). (6)

Equation (6) shows that in temperature percentiles the total heat content tendency is,156

like the internal heat content tendency in the fixed-temperature framework [equation (4)],157

unaffected by the across-isotherm heat transport associated with across-isotherm volume158

transport, as this term is by definition zero. Rather, changes in the global heat content can159

be directly attributed to diabatic surface fluxes F (?, C) and mixing M(?, C).160

3 Data161

3.1 Observations162

We use a hybrid observational dataset which combines observations of monthly-163

averaged, in-situ temperature from two optimally-interpolated gridded datasets:164

1. A temperature field developed by Cheng and Zhu [2016] with temperature casts165

sourced from the World Ocean Database, hereafter referred to as the Institute of166

Atmospheric Physics (IAP) dataset, and167

2. A temperature field from the UK Met Office Hadley Centre Enhanced Ocean Data168

Assimilation and Climate prediction (ENACT) version 4 (EN4, subversion EN.4.2.1,169
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with Gouretski and Reseghetti [2010] corrections, see Good et al. [2013] for more170

details).171

The IAP dataset is formulated to reduce sampling errors which arise due to scarce172

observations prior to the introduction of the Argo program. This is accomplished by com-173

bining observed temperature casts with the error covariance matrix from an ensemble of174

CMIP5 models [Cheng and Zhu, 2016; Cheng et al., 2017]. The IAP data is only avail-175

able for the top 2000m of the ocean, so we fill the deep ocean with temperature data176

from EN4. Our hybrid dataset extends from January 1970 to December 2014, and has177

a 1◦ × 1◦ horizontal grid with 53 vertical levels. We convert in-situ temperature in ob-178

servations to conservative temperature as it is proportional to potential enthalpy [Mc-179

Dougall, 2003; Graham and McDougall, 2013]. Monthly-averaged variables are binned180

in temperature space and time-averaged to yield annual means. Tendency terms are sub-181

sequently calculated as the linear trend of a given volume percentile between 1970 and182

2014. Marginal seas, namely, the Mediterranean, Red, Baltic, and Black Seas, and the Per-183

sian Gulf and Hudson Bay, are excluded from the analysis. Reference density is assumed184

to be d0 = 1035 kgm−3 and the specific heat �? = 4000 Jkg−1K−1.185

Uncertainty in the observations is estimated by repeating the analysis 1000 times186

with temperatures perturbed in a random normal distribution based on standard error187

estimates from the IAP dataset. Note that the uncertainty obtained from this method is188

smaller than the standard error of the linear fit used to obtain tendencies. Standard error189

is not estimated below 1000m in EN4 [Good et al., 2013]. Therefore, in this analysis, un-190

certainty is represented by the standard error of the linear regression of the relevant terms.191

Note that the auto-correlation coefficient of the OHC tendency is above 0.95 for a time lag192

of 1 year at all volume percentiles, so the standard error from the linear regression may be193

thought of as a measure of how subsampling different years which have largely indepen-194

dent data might affect our analysis.195

3.2 Models196

Temperature and surface fluxes in thirty climate models that form part of the Cli-197

mate Model Intercomparison Project phase 6 [CMIP6; Eyring et al., 2016] are analysed198

(see Table S1). We focus on the historical experiment, which branches from the pre-industrial199

control (piControl) experiment and covers the time period 1850–2014. The historical runs200

include all natural and anthropogenic forcing. The difference between conservative and201

potential temperature is negligible, so we use the more widely-reported potential temper-202

ature in the CMIP6 calculations. We use monthly-averaged data from the 1970–2014 pe-203

riod and mask the Mediterranean, Red, Baltic, and Black Seas, and the Persian Gulf and204

Hudson Bay prior to analysis. Model drift is removed in all variables of interest in or-205

der to avoid contamination of any forced trends and to ensure closure of the global ocean206

heat budget [Irving et al., 2020, see supplementary information]. The models used in this207

study archive valid monthly timescale potential temperature data, thetao, grid cell vol-208

ume, volcello, and surface flux data, hfds for both the historical and piControl experi-209

ments. As with the observations, the monthly-averaged surface fluxes, grid cell volume210

and temperature are binned into temperature co-ordinates and time-averaged to yield an-211

nual means. The surface flux tendency F (Θ∗, C) is calculated as the time-derivative of212

the time-integrated annual mean surface flux difference between the historical and pre-213

industrial control experiments. More details of this procedure are provided in the supple-214

mentary information. The binned diagnostics are then interpolated from fixed-temperature215

coordinates to temperature percentiles. The slope of the linear regression of the binned216

variables thetao and volcello in temperature percentiles provides an estimate of mH/mC for217

the models. Details of the individual model members that make up the suite of CMIP6218

models analysed are provided in the supplementary information. In the analysis of CMIP6219

models, the reference density is d0 = 1035 kgm−3, and the specific heat is �? = 4000 Jkg−1K−1,220
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unless otherwise specified by modelling groups in the relevant documentation (see refer-221

ences in Table S1).222

To complement our analysis of the standard CMIP6 diagnostics, we assesses a range223

of additional outputs from the ACCESS-CM2 historical and piControl simulations which224

are not archived as part of CMIP6 [Bi et al., 2020]. The standard surface heat flux diag-225

nostic reported for CMIP6 (hfds) does not account for the redistribution of shortwave ra-226

diation into the ocean interior (which is absorbed at a temperature different to the SST).227

To evaluate the impact of this missing process on our results, as well as the role of spe-228

cific mixing processes, we use precise ocean heat budget tendency diagnostics from the229

ACCESS-CM2 simulations. These tendency diagnostics are binned into fixed-temperature230

coordinates using the monthly-averaged temperature distribution.231

4 Results232

We quantify the integrated heat content tendency mH(?, C)/mC in the observations233

and CMIP6 models, the integrated surface flux tendency F in the CMIP6 models, and the234

inferred mixing tendency M in figure 2. The mixing in figure 2c is the residual between235

figures 2a and 2b (with the exception of the ACCESS-CM2 diagnostic term in purple),236

and includes any errors associated with binning, the neglect of shortwave penetration and237

time-averaging. By construction, the integrated curves in figure 2a, b and c are 0 at ? =238

0%.239

Figure 2. The a) heat content tendency mH(?, C)/mC, b) surface heat flux trends F , and c) inferred mixing
changesM integrated from hot to cold (i.e., values at ? = 100% are the global integral). Tendencies in a)
and b) are calculated as the linear trend in heat content or surface flux at constant temperature-percentile from
1970 to 2014. Orange shading shows the standard error (2f) of the linear trend in heat content. d) Linear
regression of the integrated F and mH/mC at each temperature-percentile in the CMIP6 models. Green line
indicates the slope of the linear regression and green shading shows the standard error of the linear fit. The
red and blue shading represents the sub-tropical and sub-polar oceans, respectively, based on the time-mean
surface temperature bounds 28◦� > Θ > 15◦� and Θ < 15◦�, respectively, from Grist et al. [2016]. The
tropics (defined as Θ > 28◦�) are not visible in this plot. The warmest 20% volume is expanded in these
plots. A secondary y-axis marks the time-mean temperature Θ corresponding to each temperature-percentile.

240

241

242

243

244

245

246

247

248

249
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The heat content increases across all temperature percentiles in the observations250

and the majority of CMIP6 models (figure 2a). There is a reasonable match in OHC ten-251

dency between the CMIP6 mean and the observations (compare black and gray lines in252

figure 2a), though there is a substantial spread between the models in the CMIP6 ensem-253

ble (compare the blue and red lines in figure 2a), and the ensemble-mean OHC is less254

than the observed OHC for ? > 10%. Surface flux tendencies again show a large spread255

between models (figure 2b).256

The strong increase in surface fluxes in the warmest ∼ 2.5% of the ocean is largely257

balanced by mixing, which fluxes this additional heat toward cooler temperature classes.258

This region corresponds to warm temperatures (Θ >∼ 25◦�), which collapse to a narrow259

temperature-percentile range at the top of the figure. There is also an anomalous diver-260

gence of heat due to mixing (driving a cooling tendency from mixing) out of the coldest261

40% of waters and an anomalous convergence of heat due to mixing (driving a warming262

tendency from mixing) between 10% < ? < 60%. The largest cooling tendency from263

mixing occurs out of the 5% coldest waters.264

The surface flux tendencies in figure 2b do not account for shortwave redistribution.265

In addition, mixing is not a defined CMIP6 variable, and is not available for many CMIP6266

models. Therefore, it remains unclear how much of the the difference between heat con-267

tent tendency and surface forcing shown in figure 2c is due to mixing, and how much is268

due to shortwave redistribution and other errors. To explore this, we analyse the ocean269

model component of a single CMIP6 model member - ACCESS-CM2 - applying the di-270

agnostic framework of Holmes et al. [2019] to explicitly calculate mixing and the effect of271

shortwave redistribution. The breakdown of processes in ACCESS-CM2 (purple lines in272

figure 2) largely aligns with the inferred diabatic fluxes in the rest of the CMIP6 models.273

There is a cooling tendency from mixing between 60% < ? < 100% and a warming ten-274

dency from mixing between 10% < ? < 60%. In addition, the strong increase in surface275

fluxes at 0% < ? < 2.5% is reduced by 17.7% when shortwave redistribution is taken into276

account (not shown). The mixing in these volume classes consequently does not change as277

much as inferred from the CMIP6 models.278

It is not possible to calculate surface flux tendencies and mixing from coarse res-279

olution observational datasets. Instead, reanalysis products are often used which rely on280

ocean models (e.g., Liang and Yu [2016]). The tracer-percentile framework allows us to281

infer bulk surface flux and mixing quantities directly from observed OHC tendencies us-282

ing the CMIP6 relationships in figure 2. A linear regression analysis is performed be-283

tween integrated surface flux tendencies and heat content tendencies at each temperature-284

percentile for each of the CMIP6 models, with the slope and error of the regression shown285

in figure 2d. The inferred observed surface flux may be calculated using this slope as286

F = mH/mC × (;>?4. There is significant error in the linear regression in the tropical and287

sub-tropical regions (below ? ≈ 10%). However, at temperature percentiles colder than288

? ≈ 10% (i.e. the coldest 90% of the ocean), there is a statistically significant correlation289

between heat content and surface flux tendencies. Between 10% < ? < 20%, the slope290

of the correlation is close to 1, implying that excess heat entering the surface at these vol-291

ume classes tends to remain there. By construction, the slope should be 1 at ? = 100%,292

as there is no mixing in a globally integrated sense. Any deviation from 1 is due to diag-293

nosed non-closure of the ocean heat budget in the models [Irving et al., 2020]. Assuming294

the relationship between surface fluxes and OHC tendency in the CMIP6 models holds for295

the real ocean, we infer the integrated surface flux-driven tendency and mixing-driven ten-296

dency as a function of temperature percentiles for the observations (dashed lines in figures297

2b and c). Note that the inferred surface flux and mixing profile is only statistically signif-298

icant above a temperature-percentile of ∼ 10%. A further breakdown of the observed OHC299

tendency and its inferred surface fluxes and mixing is discussed in section 5.300

The OHC tendency in the CMIP6 mean is less than that in the observations (Fig-309

ure 2a). The tracer-percentile framework allows us to identify volume classes (organ-310
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Figure 3. Global temperature anomaly calculated relative to a 1970-1980 baseline in a) temperature per-
centiles, and b) fixed depth in the observations. c) and d) same as above but for the CMIP6 ensemble-mean.
Grey triangles indicate volcanic eruptions of El Chichón (1982) and Pinatubo (1991). e) and f) Temperature
anomaly trends (◦C/year) calculated from the linear trend in temperature at constant temperature-percentile
and depth, respectively. Orange shading shows the standard error (2f) of the linear trend in temperature
anomaly. The warmest 20% of the ocean (or the top 1000 metres in panels b and d) use an expanded y-axis. A
secondary axis marks the time-mean temperature Θ corresponding to the temperature-percentile in a), c) and
e).

301

302

303

304

305

306

307

308

ised by temperature) where the cold anomaly that leads to this bias is introduced, and311

whether it can be traced back to mixing or surface flux changes. To this end, we plot the312

temperature anomaly in temperature percentiles and fixed depths in the observations and313

CMIP6 models in figure 3. Recall from section 2 that the temperature anomaly in tem-314

perature percentiles is proportional to the percentile derivative of the OHC tendency, i.e.,315

mΘ?

mC
= 100
V) d0�?

m
m?

(
mH
mC

)
.316
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In tracer-percentiles temperature anomalies are qualitatively similar to the fixed-317

depth framework (figures 3a-d). Note in particular the similarity of the observed negative318

temperature anomaly between 1980 and 1990 in tracer-percentiles and fixed-depth coordi-319

nates (compare figures 3a and 3b), as well as the persistent cooler (compared to observa-320

tions) signal in the CMIP6 mean between 5% < ? < 20% and −1 km < I < −0.25 km321

(compare figures 3c and 3d, and thick grey lines in 3e and 3f). A key difference between322

the temperature percentiles and fixed depth is the warm anomaly in the coldest 20% tem-323

perature percentiles, which cannot be seen in the deep ocean (I < −4 km). The coldest324

percentiles include surface polar waters. Therefore, where warming of surface polar waters325

is conflated with changes in the surface sub-tropics and tropics at fixed depth, surface po-326

lar warming is emphasised at the coldest temperature percentiles. Analysis of temperature327

anomalies of water colder than 0◦ at fixed-depth (not shown) confirms that the majority328

of the warming in the coldest percentiles originates at the surface of the ocean. The tem-329

perature trend over the full time period, shown in temperature-percentile and fixed-depth330

coordinates in figures 3e and 3f respectively, reveals that the observed annual temperature331

anomaly has a number of ‘kinks’ in the sub-surface (I ≈ [0.2, 0.5] km) in fixed-depth co-332

ordinates which are not visible in the tracer-percentile framework. We posit these kinks333

may be associated with XBT corrections in the observations [Abraham et al., 2013] or in-334

ternal variability.335

The CMIP6 models exhibit a weaker warming trend in the ∼ 40% warmest vol-336

ume classes in the ocean, particularly between 5% < ? < 20% (compare black and gray337

lines in figure 3e). Revisiting the CMIP6 linear regression in figure 2d, we conclude that338

the weaker modelled warming trend in volume classes above ∼ 10% is likely attributed339

to biases in surface flux changes (as the regression coefficient is close to 1 at these per-340

centiles). These surface flux trends may be inaccurate in magnitude or spatial pattern,341

leading to heat entering the ocean at incorrect volume classes. Past research with CMIP5342

models has also identified a consistent sea surface temperature (SST) bias in climate mod-343

els - particularly a warm bias in the Southern Ocean SSTs [Sallée et al., 2013; Meijers,344

2014]. There is evidence this SST bias still exists in the current generation of CMIP6345

models [Beadling et al., 2020]. In fact, SSTs and surface fluxes are tightly coupled, so346

the true reason for the CMIP6 bias is likely to be a combination of inaccuracies in both347

[Hyder et al., 2018]. A possible explanation for the weaker CMIP6 warming trend may348

also be that the CMIP6 models have biased mixing, which would imply a surface flux bias349

elsewhere.350

5 Discussion and Conclusions351

We introduce a novel diagnostic framework (termed the tracer-percentile frame-352

work) which we apply to ocean temperature and use to directly relate changes in OHC353

to changes in diabatic heat fluxes, namely, surface forcing and mixing. By quantifying354

the heat content in and transport across temperature percentiles (ordered from warmest to355

coldest), we exclude adiabatic processes and avoid regime changes associated with shifting356

isotherms in a warming ocean. We are thus able to trace changes in OHC to changes in357

surface fluxes and mixing using a combination of traditional observational hydrographic358

datasets and CMIP6 models. Comparing heat content tendency and surface fluxes in a359

suite of thirty CMIP6 models from 1970 to 2014, we establish that changes in the cold-360

est 90% of the ocean may be traced to changes in the net surface heat flux into volume361

classes in the sub-polar ocean. Assuming that the linear regression between OHC ten-362

dency and surface flux changes in the CMIP6 climate models holds for the real ocean, we363

infer changes in sub-polar surface heat fluxes and mixing based on observed OHC trends.364

Figure 4 summarises the observed OHC tendency and the inferred surface flux and375

mixing tendencies in temperature-percentile layers in the ocean. We find that ∼ 60% of376

the anomalous surface flux into the ocean (sum of all arrows in figure 4 save the red ar-377

row) enters 23% of the surface ocean (sum of all outcrop lengths in figure 4 except the378
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outcrop of the warmest 10% volume), which represents the outcrop area of the temperature-379

percentile bounding 90% of the ocean by volume. Therefore, minor changes to SSTs or380

surface fluxes overlying this relatively small surface area of the ocean may have profound381

impacts on the mean stratification and ocean circulation. Down-gradient mixing is de-382

creasing across the 40%-95% percentiles, and increasing across the 10% and 20% per-383

centiles according to our analysis. The strongest decrease in mixing occurs across the 95%384

percentile.385

For the first time, the tracer-percentile framework allows us to link observed OHC386

changes to surface flux tendencies and the surface area over which they enter. This result387

enables the identification of the cause of biases in OHC tendencies in climate models. We388

identify a cooling bias in CMIP6 models which is apparent at both fixed depth and tem-389

perature percentiles. We trace this cooling bias to anomalous changes in surface forcing390

into the same temperature percentiles. The surface flux field may have either incorrect391

magnitude or incorrect spatial distribution, the SSTs which define the volume classes into392

which the surface fluxes enter may be biased in many ocean models, or the mixing in all393

CMIP6 models may be biased (with a surface flux bias elsewhere).394

The insights from the tracer-percentile framework motivate a mechanistic approach395

to future explorations of OHC tendency and its diabatic contributors. The global analy-396

sis presented here indicates that surface fluxes over a small region of the ocean contribute397

to OHC changes in the vast majority of the ocean volume. Therefore, understanding the398

mechanisms which lead to increases in surface fluxes in these regions (and indeed to sur-399

face flux biases in models) is crucial. Mixing also displays variability between volume400

classes, and understanding the processes which drive these changes in mixing is vital to401

gaining a complete picture of historical and future changes in OHC. The tracer-percentile402

framework is a versatile tool, and future efforts will work towards expanding the use-cases403

of the tracer-percentile framework and further understanding oceanic and atmospheric dy-404

namics in the context of temperature and other tracers.405
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